ЕГЭ, вопрос 26: В. Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию

Проверяемые элементы содержания по спецификации (2019): Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию.

Кодификатор 1.5.2/1.1.3. Уровень сложности В, 3 балла.

Время выполнения – 30 мин.

Задания

  1. Демо 2020 (26). Дублирует задание 2019 года.
  2. Демо 2019 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (30, 7), (10, 8), (10, 21). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
    Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 68. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 68 или больше камней.
    В начальный момент в первой куче было шесть камней, во второй куче – S камней; 1 ≤ S ≤ 61.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.
    Выполните следующие задания.
    Задание 1
    а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.
    б) Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
    Задание 2
    Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
    − Петя не может выиграть за один ход;
    − Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
    Для указанного значения S опишите выигрышную стратегию Пети.
    Задание 3
    Укажите значение S, при котором одновременно выполняются два условия:
    − у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
    − у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани.
    Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы).
    В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.
  3. Демо 2018 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 28.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.
    Выполните следующие задания.
    Задание 1
    а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    Задание 2
    Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём:
    – Петя не может выиграть за один ход;
    – Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
    Для указанных значений S опишите выигрышную стратегию Пети.
    Задание 3
    Укажите значение S, при котором:
    – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
    – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани.
    Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в куче.
    Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.
  4. D2018 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 75 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 70.
    Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 70 или больше камней.
    В начальный момент в куче было S камней; 1 ≤ S ≤ 69.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    Задание 1
    а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    Задание 2
    Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
    – Петя не может выиграть за один ход;
    – Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
    Для каждого указанного значения S опишите выигрышную стратегию Пети.
    Задание 3
    Укажите значение S, при котором одновременно выполняются два условия:
    – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
    – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани.
    Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в куче.
    Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.
  5. R2018 (26). Два игрока, Паша и Вася, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 68.
    Задание 1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S. б)Укажите такое значение S, при котором Паша не может выиграть за один ход, но при любом ходе Паши Вася может выиграть своим первым ходом. Опишите выигрышную стратегию Васи.
    Задание 2. Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши.
    Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи (в виде рисунка или таблицы).
  6. Демо 2017 (26). Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 19.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания.
    1. а) При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши.
    б) У кого из игроков есть выигрышная стратегия при S = 18, 17, 16? Опишите выигрышные стратегии для этих случаев.
    2. У кого из игроков есть выигрышная стратегия при S = 9, 8? Опишите соответствующие выигрышные стратегии.
    3. У кого из игроков есть выигрышная стратегия при S = 7? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в позиции.
  7. Демо 2016 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
    Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, что в кучах всего будет 73 камня или больше.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Например, при начальных позициях (6, 34), (7, 33), (9, 32) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.
    Задание 1. Для каждой из начальных позиций (6, 33), (8, 32) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.
    Задание 2. Для каждой из начальных позиций (6, 32), (7, 32), (8, 31) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.
    Задание 3. Для начальной позиции (7, 31) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.
  8. Демо 2015 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 18 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 35.
    Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 35 или больше камней.
    В начальный момент в куче было S камней; 1 ≤ S ≤ 34.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    Задание 1
    а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    Задание 2
    Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
    - Петя не может выиграть за один ход;
    - Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
    Для каждого указанного значения S опишите выигрышную стратегию Пети.
    Задание 3
    Укажите значение S, при котором одновременно выполняются два условия:
    - у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
    - у Вани нет стратегии, которая позволит ему гарантированно выигратьпервым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани.
    Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рисунке на рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в позиции.
  9. Демо 2014 (C3). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или два камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 17 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 27. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 27 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 26.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.
    3. Укажите значение S, при котором:
    – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и
    – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в куче.
  10. Демо 2013 (C3). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 22. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 22 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 21.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём
    – Петя не может выиграть за один ход, и
    – Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.
    Для каждого указанного значения S опишите выигрышную стратегию Пети.
    3. Укажите значение S, при котором:
    – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и
    – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в куче.
  11. Демо 2012 (C3).
  12. Демо 2011 (C3). Два игрока играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 3, а во второй 4 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди. Ход состоит в том, что игрок или удваивает число камней в какой-то кучке или добавляет 4 камня в какую-то кучку. Игрок, после хода которого общее число камней в двух кучках становится больше 25, проигрывает. Кто выигрывает при безошибочной игре обоих игроков – игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.
  13. Демо 2010 (C3). Два игрока играют в следующую игру. На координатной плоскости стоит фишка. В начале игры фишка находится в точке с координатами (–2,–1). Игроки ходят по очереди. Ход состоит в том, что игрок перемещает фишку из точки с координатами (x,y) в одну из трех точек: (x+3,y), (x,y+4), (x+2,y+2). Игра заканчивается, как только расстояние от фишки до начала координат превысит число 9. Выигрывает игрок, который сделал последний ход. Кто выигрывает при безошибочной игре – игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.
  14. Демо 2009 (C3). Два игрока играют в следующую игру. На координатной плоскости стоит фишка. Игроки ходят по очереди. В начале игры фишка находится в точке с координатами (5,2). Ход состоит в том, что игрок перемещает фишку из точки с координатами (x,y) в одну из трех точек: или в точку с координатами (x+3,y), или в точку с координатами (x,y+3), или в точку с координатами (x,y+4). Выигрывает игрок, после хода которого расстояние по прямой от фишки до точки с координатами (0,0) не меньше 13 единиц. Кто выигрывает при безошибочной игре обоих игроков – игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.
  15. Демо 2008 (C3). Два игрока играют в следующую игру. Перед ними лежат две кучки камней, в первой из которых 1, а во второй – 2 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди. Ход состоит в том, что игрок или увеличивает в 3 раза число камней в какой-то куче, или добавляет 2 камня в какую-то кучу. Выигрывает игрок, после хода которого общее число камней в двух кучах становится не менее 17 камней. Кто выигрывает при безошибочной игре обоих игроков – игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.
  16. (т2-2012/1)
  17. (т2-2012/2)
  18. с114 (26). Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может (1) добавить в кучу один камень или (2) увеличить количество камней в куче в два раза или (3) увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 30 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 36. Если при этом в куче оказалось не более 60 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 30 камней и Паша утроит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 35.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания.
    1. а) При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши.
    б) У кого из игроков есть выигрышная стратегия при S = 31, 32, 33, 34? Опишите выигрышные стратегии для этих случаев.
    2. У кого из игроков есть выигрышная стратегия при S = 11? Опишите соответствующие выигрышные стратегии.
    3. У кого из игроков есть выигрышная стратегия при S = 10? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.
  19. с124 (26). Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может (1) добавить в кучу один камень или (2) увеличить количество камней в куче в два раза или (3) увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 30 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 42. Если при этом в куче оказалось не более 72 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 30 камней и Паша утроит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 41.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания.
    1. а) При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши.
    б) У кого из игроков есть выигрышная стратегия при S = 37, 38, 39, 40? Опишите выигрышные стратегии для этих случаев.
    2. У кого из игроков есть выигрышная стратегия при S = 13? Опишите соответствующие выигрышные стратегии.
    3. У кого из игроков есть выигрышная стратегия при S = 12? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.
  20. с113 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
    добавить в кучу один камень или
    добавить в кучу два камня или
    добавить в кучу три камня или
    увеличить количество камней в куче в два раза.
    Например, имея кучу из 10 камней, за один ход можно получить кучу из 11, 12, 13 или 20 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче превышает 33. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 33.
    Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания.
    Задание 1.
    а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    Задание 2.
    Укажите четыре значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.
    Для указанных значений S опишите выигрышную стратегию Пети.
    Задание 3.
    Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.
  21. с123 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
    добавить в кучу один камень или
    добавить в кучу два камня или
    добавить в кучу три камня или
    увеличить количество камней в куче в два раза.
    Например, имея кучу из 10 камней, за один ход можно получить кучу из 11, 12, 13 или 20 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче превышает 37.
    Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 37.
    Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания.
    Задание 1.
    а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    Задание 2.
    Укажите четыре значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.
    Для указанных значений S опишите выигрышную стратегию Пети.
    Задание 3.
    Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.
  22. с112 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или два камня или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 17 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 65. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 65 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 64.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    1. а) При каких значениях числа S Петя может выиграть в один ход? Укажите все такие значения.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    2. Укажите три таких значения S, при которых у Пети есть выигрышная стратегия, причём
    – Петя не может выиграть за один ход, но
    – Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
    Для каждого из указанных значений S опишите выигрышную стратегию Пети.
    3. Укажите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, однако у Вани нет стратегии, которая позволит ему гарантированно выиграть 1-м ходом.
    Для указанного значения S опишите выигрышную стратегию Вани.
    Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.
  23. с122 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или два камня или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 17 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче становится не менее 74. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 74 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 73.
    Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    1. а) При каких значениях числа S Петя может выиграть в один ход? Укажите все такие значения.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    2. Укажите три таких значения S, при которых у Пети есть выигрышная стратегия, причём
    – Петя не может выиграть за один ход, но
    – Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.
    Для каждого из указанных значений S опишите выигрышную стратегию Пети.
    3. Укажите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, однако у Вани нет стратегии, которая позволит ему гарантированно выиграть 1-м ходом.
    Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.
  24. к112 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в шесть раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 60 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче превышает 360. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 361 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 360.
    Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.
    Для указанных значений S опишите выигрышную стратегию Пети.
    3. Укажите такое значение S, при котором
    – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом
    – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.
  25. к122 (26). Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в шесть раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 60 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
    Игра завершается в тот момент, когда количество камней в куче превышает 365. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 366 или больше камней.
    В начальный момент в куче было S камней, 1 ≤ S ≤ 365.
    Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
    Выполните следующие задания. Во всех случаях обосновывайте свой ответ.
    1. а) При каких значениях числа S Петя может выиграть первым ходом? Укажите все такие значения и выигрывающий ход Пети.
    б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.
    2. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть первым ходом, но (б) Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня.
    Для указанных значений S опишите выигрышную стратегию Пети.
    3. Укажите такое значение S, при котором
    – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом
    – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
    Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На ребрах дерева указывайте, кто делает ход, в узлах – количество камней в позиции.


Copyright © 1993–2020 Мацкявичюс Д.А. Все права защищены.
Никакая часть сайта не может быть воспроизведена никаким способом без письменного разрешения правообладателя и явной ссылки на данный ресурс.